If it's not what You are looking for type in the equation solver your own equation and let us solve it.
512=2w^2
We move all terms to the left:
512-(2w^2)=0
a = -2; b = 0; c = +512;
Δ = b2-4ac
Δ = 02-4·(-2)·512
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*-2}=\frac{-64}{-4} =+16 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*-2}=\frac{64}{-4} =-16 $
| 0.80x=40+0.30x | | 0.5(7-9x)=11-(5x+6) | | -1/2+w/6=-20.4 | | 3b-5=17 | | 3x-(4x-6)=5+x | | 9w+4=10w-9 | | 2p^2=18=0 | | -6x+-7x+-23x=180 | | 4x-4=46-6x | | 6x^2-11x-21=-11 | | 6x+113=10x-7 | | 1890=p(6)(7000) | | -(x-4*4)=3x | | 8(x-2)+15=11(2x+3)+3x | | 4(x+8)-6=46 | | 1/2h=6;h=2 | | s=-12+76 | | -29=-3+4x | | 11x+1+20x-1+30x-3=180 | | 5c=16.5=13.5=10c | | c=5(4.5)+150 | | 6/x+5=14 | | 2.3z+5+3*3=3(z-7) | | 27=m^-3 | | 5x^2-7x-48=4 | | 3*11^x=2 | | 0=-8x-10 | | x^2-2x+312=0 | | 2x+10+4x-34+4x-36=180 | | 3x-1/8x=23 | | n/5-7=10 | | 3/7p=5 |